Classificação da camada lipídica do filme lacrimal Usando índices de diversidade filogenética e a função K de Ripley como descritores de textura

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: CRUZ, Luana Batista da lattes
Orientador(a): PAIVA, Anselmo Cardoso de lattes
Banca de defesa: PAIVA, Anselmo Cardoso de lattes, SILVA, Aristófanes Corrêa lattes, CAVALCANTE, André Borges lattes, AIRES, Kelson Rômulo Teixeira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2573
Resumo: Dry Eye Syndrome is one of the most frequently reported eye diseases in ophthalmologic practice. The diagnosis of this condition is a challenging task due to its multifactorial etiology. One of the most commonly used tests is the manual classification of tear film images captured with the Doane Interferometer or the Tearscope Plus. The instability of the tear film creates the need to develop computational techniques to support specialists in the diagnosis. This work presents a new approach for tear film classification based on texture analysis with phylogenetic diversity indexes and Ripley’s K function. After feature extraction, we perform a Greedy Stepwise feature selection to determine the most representative samples. Finally, we use Support Vector Machine, Random Forest, Naive Bayes and Bayes Net to provide different classification approaches. This set of texture descriptors has enabled the proposed method to achieve promising results. The proposed method has achieved as best experimental results over 99% of accuracy. This reveals that our method can be a practicable alternative to assist specialists diagnose the categories of the tear film interference patterns.