Estudo de espalhamento Raman em cristais de L-tirosina hidroclorídrica submetidos a altas pressões

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: SANTOS, Carlos Alberto Andrade Serra dos
Orientador(a): FAÇANHA FILHO, Pedro de Freitas
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DOS MATERIAIS/CCSST
Departamento: COORDENAÇÃO DO CURSO DE CIÊNCIA E TECNOLOGIA - IMPERATRIZ/CCSST
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1754
Resumo: In this work L-tyrosine hydrochloride crystals (LTHCl) were prepared by slow evaporation technique at room temperature and characterization by X-ray diffraction, thermogravimetry, differential thermal analysis, differential scanning calorimetry and Raman scattering at room temperature and under high pressures. After four weeks, it was possible obtain various crystals of good crystalline quality. The solution was acidic with pH 1.2. From the XRD pattern of the material and the Rietveld analysis, it was found that at room temperature LTHCl crystallizes in monoclinic space group (P21) with two molecules per unit cell. The refinement quality parameters were satisfactory with Rp = 6.29 %, Rwp = 8.49 % and S = 1.34. The thermal analysis showed that the material undergoes fusion around 231°C and presented no thermal event that features phase transition before the fusion. Furthermore, thermal analysis showed that the crystal is stable up to 220°C. Calculations using DFT (Functional Density Theory) were performed to identify the vibrational modes in the LTHCl crystal. Raman scattering measurements as a function of pressure (0,0-7,2 GPa) showed as major changes: the occurrence of an inversion of intensity between a strong band (attributed to torsion of L-tyrosine molecule) and an imperceptible band (at ambient pressure) for pressures above 2,5 GPa and a discontinuity of dω/dP associated with the strong band between 1.0 and 1.5 GPa, suggesting a conformational transition above 1.5 GPa stabilizing the structure up to 7,2 GPa. In the region of the internal modes few changes were observed, with the downshift of the COOH and NH3+ units as one of them. Finally, the decompression reinforced that the conformational phase transition is reversible, demonstrating a great capacity of this material to regenerate its original structure without presenting hysteresis.