Sintonia RNA-RBF para o Projeto Online de Sistemas de Controle Adaptativo

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Machado, Madson Cruz lattes
Orientador(a): FONSECA NETO, João Viana da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1744
Resumo: The need to increase industrial productivity coupled with quality and low cost requirements has generated a demand for the development of high performance controllers. Motivated by this demand, we presented in this work models, algorithms and a methodology for the online project of high-performance control systems. The models have characteristics of adaptability through adaptive control system architectures. The models developed were based on artificial neural networks of radial basis function type, for the online project of model reference adaptive control systems associated with the of sliding modes control. The algorithms and the embedded system developed for the online project were evaluated for tracking mobile targets, in this case, the solar radiation. The control system has the objective of keeping the surface of the photovoltaic module perpendicular to the solar radiation, in this way the energy generated by the module will be as high as possible. The process consists of a photovoltaic panel coupled in a structure that rotates around an axis parallel to the earth’s surface, positioning the panel in order to capture the highest solar radiation as function of its displacement throughout the day.