Diagnóstico de falhas em transformadores de potência através de análise de gases dissolvidos usando rede neural artificial

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ENRIQUEZ, Alex Rogelio Soto lattes
Orientador(a): MENDEZ, Osvaldo Ronald Saavedra lattes
Banca de defesa: MENDEZ, Osvaldo Ronald Saavedra lattes, LIMA, Shigeaki Leite de lattes, SOUZA, André Nunes de lattes, CASAS, Vicente Leonardo Paucar lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/3105
Resumo: Power transformers are very important equipment in the operation of electrical systems, having the irreplaceable function of transforming voltage and current levels for transmission of electrical energy from generation center to end user. This importance is even greater from the economic point of view, since in the event of a failure condition with the consequent interruption of electrical service can lead to major economic losses for both the utility and the end user. An important amount of bibliographies oriented to the maintenance of power transformers in perfect operating conditions is presented in the updated literature. In this master's dissertation, a methodology for diagnosing power transformers failures is developed by applying Binary Particle Swan Optimization (BPSO) to adjust the K-NN classifier (k-Nearest Neighbor) selecting best grouping evaluation variables for a method (waterfall configuration). In the training and testing process for a method based on Artificial Neural Network (ANN) a performance of 100% is achieved, thus constituting a competitive alternative for power transformer fault diagnosis.