Segmentação semântica de áreas de plantações agrícolas via U-Net em dois estágios

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: OLIVEIRA, Walysson Carlos dos Santos lattes
Orientador(a): BRAZ JÚNIOR, Geraldo lattes
Banca de defesa: BRAZ JÚNIOR, Geraldo lattes, GOMES JÚNIOR, Daniel Lima lattes, PAIVA, Anselmo Cardoso de lattes, BAPTISTA, Cláudio de Souza lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/3955
Resumo: The agribusiness tax is mainly levied on the production of agricultural crops. To reduce tax evasion in agribusiness, it is possible to monitor the development of plantations through the analysis of satellite images. For this, we can apply Machine Learning techniques to satellite images to segment the planted area, and the area, in turn, can be used to estimate the production of monitored plantations. This work aims to solve the first stage of the problem, the Segmentation of the Planted Area. For this, we developed a machine learning architecture for segmentation of plantation areas, the Two-stage U-net. In addition, the work also included the creation of a satellite image dataset with annotations for the segmentation of plantation areas. We trained the proposed model and we adjusted its hyperparameters considering the U-net Encoder, the Optimizer, the Loss Function, and the Batch Size of images. We selected the fitted model that performed best in tests with Hyperopt and GridSearch. The results in mIoU of the Two-stage U-net were superior to the results of other architectures used in similar works.