Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
ROCHA FILHO, Orlando Donato
 |
Orientador(a): |
SERRA, Ginalber Luiz de Oliveira
 |
Banca de defesa: |
BARROS FILHO, Allan Kardec Duailibe
,
SOUZA, Francisco das Chagas
,
MUNARO, Celso José
,
LEITE, Daniel Furtado
 |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/1898
|
Resumo: |
This thesis presents a maximum likelihood based modeling approach applied to dynamic systems operating in non-stationary environment that uses recursive parametric estimation based on the method of fuzzy instrumental variable. The context is evolving and the idea is to guarantee a robust for estimation of the parameters of noise-corrupted experimental data. The methodology consists of an evolving fuzzy clustering algorithm based on the similarity of the data which employs an adaptive distance norm based on the maximum likelihood criterion that use an adaptive search strategy on the experiment in order to avoid the curse of dimensionality related to the number of rules created during data clustering of the data set. The computational and experimental results to exemplify the proposed methodology are: statistical analysis of the fuzzy instrumental variable inserted in the evolving context; black box modeling of a thermal plant; identification of a benchmark nonlinear system widely published in the literature and the black box modeling of a 2DOF helicopter. These examples are used to illustrate the performance and efficiency by operating in a non–stationary environment. |