Encapsulamento de [beta]-caroteno em nanotubos de carbono utilizando modelagem molecular

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Moreira, Edvan lattes
Orientador(a): AZEVEDO, David Lima
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA/CCET
Departamento: DEPARTAMENTO DE FÍSICA/CCET
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1583
Resumo: From its discovery, the nanotubes of carbon are seen as material’s highly promising for a lot of applications. The combination of nanotubes of carbon with other molecules is the most general form of modifying their properties. New methods to control and to tune these properties are necessary for the developing of their potentials applications. The functionalization has been proposed as one of the processes capable to modify the optical properties of the nanotubes of carbon, through chemical reaction ”it is arrested”another molecule in the surface of the nanotube. However, another more elegant form of functionalization is through the encapsulation of molecules inside the nanotube. Recently, the encapsulation of the molecule of the beta-carotene experimentally in nanotubes of carbon was accomplished and changes were verified in the absorption spectrum. In this work we performed simulations of molecular dynamics using field of similar universal force to test the encapsulation of the beta-carotene, and calculations of Electronic Structure to verify charge transference. The obtained results of the molecular dynamics confirm that the encapsulation of the -carotene happens in the three cases studied experimentally by Yanagi and collaborators.