Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
SILVA, Samira Abdalla da
 |
Orientador(a): |
PAES, Antonio Marcus de Andrade |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE/CCBS
|
Departamento: |
DEPARTAMENTO DE MEDICINA I/CCBS
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/1457
|
Resumo: |
Platelets, the blood cells involved in maintaining hemostasis, play a key role in the development of acute ischemic coronary, cerebrovascular events and are critically involved in the thrombosis process. In response to vascular injury, changes in blood flow or chemical stimuli, platelets trigger three functional mechanisms: adhesion, activation and aggregation. After platelet capture, a rapid stabilization of adhesion is required for thrombus formation to occur. Platelet activation results from conformational changes dependent of the protein disulfide isomerase (PDI), so that it has recently been proposed as a molecular target in platelet antiaggregant activity. The use of plant species rich in phenolic compounds as a source of bioactive substances is a promising strategy for the development of new therapeutic alternatives for thromboembolic diseases. Previously, we have shown that Syzygium cumini (L.) Skeels leaf contains multiple polyphenols, which support its use for antiplatelet purposes. Therefore, this study sought to evaluate the effects of polyphenol-rich extract (PESc) from S. cumini leaf on platelet activation and aggregation, as well as on PDI reductase activity. Platelet-rich plasma from healthy volunteers (n=5) was incubated with PESc (10-1000 μg/mL), for 25 min, before activation with ADP, thrombin or PMA. To analyze PESc effect on integrin αIIbβ3 activation, flow citometry protocols were conducted in washed platelets pre-treated with PESc (10-1000μg/mL) and activated with thrombin before tagging with PAC–1 antibody. Finally, PESc (0.1-100 μg/mL) effects on PDI reductase activity were assessed in absence or presence of polyphenolic standards gallic acid, myricetin and quercetin. PESc dose-dependently inhibited platelet aggregation despite the agonist used, even though lower agonist concentration potentiated PESc inhibitory effects to a maximal 77% inhibition at 2.5 μM ADP. Similarly, PESc dose-dependently reduced the proportion of activated αIIbβ3 molecules per platelet up to one third of control at 1000 μg/mL. These effects correlated with the strong inhibitory action of PESc on PDI activity, an effect synergically augmented in presence of standards. Therefore, our data show that PESc reduces platelet aggregation and activation, probably through PDI inhibition, strengthening its prominent antiplatelet activity. |