Metodologia computacional para detecção automática de estrabismo em imagens digitais através do Teste de Hirschberg

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: ALMEIDA, João Dallyson Sousa de lattes
Orientador(a): SILVA, Aristófanes Corrêa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1813
Resumo: Strabismus is a pathology that affects about 4% of the population causing aesthetic problems, reversible at any age, and irreversible tensorial alterations, modifying the vision mechanism. Hirschberg's test is one of the available exams to detect such pathology. Computer Aided Diagnosis and Detection Systems have been used with relative success to help health professionals. Nevertheless, the increasingly application of high technology resources to help diagnosis and therapy in ophthalmology is not a reality in the Strabismus sub-specialty. This way, the present work has the objective of introduing a methodology for automatic detection Strabismus in digital images through Hirschberg's test. For such, it is organized in four stages: finding the region of the eyes, precise location of the eyes, limb and bright, and identi cation of Strabismus The methodology presents results of 100% of sensibility, 91,3% of specificity and 94% of match in the identification of Strabismus, comproving the eficiency of the geostatistical functions in the extraction of the texture of the eyes and of the calculations of the alignment between eyes in digital images acquired from Hirschberg's test.