RECONHECIMENTO DA FALA SUBVOCAL BASEADO EM ELETROMIOGRAFIA DE SUPERFÍCIE (EMG) UTILIZANDO ANÁLISE DE COMPONENTES INDEPENDENTES (ICA) E REDE NEURAL MLP

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Mendes, José da Assunção Gomes
Orientador(a): LABIDI, Sofiane lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
ICA
Palavras-chave em Inglês:
ICA
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/284
Resumo: The performance of speech recognition systems is commonly degraded by either speech-related disabilities or by real-world factors such as the environment s noise level and reverberation. In this research, we propose a subvocal speech recognition system based on electromyography (EMG signal) for subvocal acquisition, Independent Component Analysis (ICA) for feature extraction and Neural Networks MLP for classification. We have evaluated the system s performance using a subvocal vowel phonemes database. According to the results, the methodology proposed obtained a success rate of 93.99%.