Síntese e caracterização de compósito carbonáceo de magnetita para aplicação como fotocalisador

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: COSTA, Fernanda Rodrigues Torres da lattes
Orientador(a): MACIEL, Adeilton Pereira lattes
Banca de defesa: MACIEL, Adeilton Pereira lattes, CAVALCANTE, Kiany Sirley Brandão lattes, DAMOS, Flávio Santos lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCET
Departamento: DEPARTAMENTO DE QUÍMICA/CCET
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2507
Resumo: In the present work a carbonaceous composite of magnetite obtained from the coconut ariri biomass was prepared by the wet impregnation method with iron chloride III for the degradation of the rhodamine B. The composite was characterized by X-Ray Diffraction), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray energy dispersion spectroscopy (EDX), Raman Spectroscopy and Thermogravimetric analysis of biomass. The obtained compound presented magnetic characteristics, where such property facilitates the removal of the material in a reaction mixture. With the XRD technique, one can observe the presence of phases referring to a carbonaceous material with phase of magnetite. The infrared spectra confirmed the presence of the vibrations of the main bonds present in the in natura biomass and the obtained composite. The micrographs illustrated a heterogeneous material. The EDX technique shows that the composite is composed primarily of carbon, iron, and oxygen. The RAMAN spectroscopy demonstrates that the composite obtained has characteristics of carbonaceous compound. In the thermal analysis of the biomass, it was observed the main losses of mass, referring to the decomposition of the lignino-cellulosic material, as well as the influence of iron chloride. After characterizing this carbonaceous compound was applied in the degradation of rhodamine B, where the photocatalytic activity was evaluated by light irradiation in rhodamine solution. The photodegradation of the organic dye reached 80% in maximum time of 140 min light irradiation.