Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
RODRIGUES, Jadyna Ayres
 |
Orientador(a): |
SOUZA, Francisco das Chagas de
 |
Banca de defesa: |
SOUZA, Francisco das Chagas de
,
FONSECA NETO, João Viana da
,
SANTOS, Walbermark Marques dos
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tedebc.ufma.br/jspui/handle/tede/4212
|
Resumo: |
Through some estimation techniques, an unknown quantity of interest can be estimated, based on a set of measured data or possibly corrupted by measurement noise, being the quality of this estimate evaluated by its proximity to the true value. Filtering uses present and past observations to produce a current estimate of the unknown quantity. The structure in state space allows working with the dynamics of the system, as the algorithm LMS (Least-Mean Square) in state space SSLMS (State Space Least -Mean Square) that generates an estimated state vector, being a possible solution to the estimation problem. SSLMS outperform the tracking capability of the standard LMS, which is limited due to the assumption of linear regression model. By overcoming this constraint, SSLMS exhibits a marked improvement in tracking performance over the standard LMS and its known variants. Based on this principle, this work proposes a new variant of the adaptive filter of the LMS family in state space for estimating state variables. The proposed method, called ZA-LMS algorithm (Zero-Attracting LMS) is compared with other algorithms in the literature to evaluate performance in terms of convergence speed and tracking capacity. |