Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Costa, Wendell Mesquita
 |
Orientador(a): |
MARQUES, Aldaléa Lopes Brandes
 |
Banca de defesa: |
Tanaka, Auro Atsushi |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA/CCET
|
Departamento: |
QUIMICA
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/942
|
Resumo: |
A ruthenium (III) hexacyanoferrate film was anchored with Nafion® on the surface of a glassy carbon electrode and tested in Britton-Robinson buffer ionic strength of 0.1 mol L-1 and pH = 1.8 at room temperature. The cyclic voltammograms of the electrode with the film showed four pair peaks with a surface-confined characteristic and they also indicated that the film is strongly dependent on the solution pH. The ruthenium (III) hexacyanoferrate film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry, rotating disk electrode voltammetry and chronoamperometry techniques. It has been observed that the oxidation of hydrazine to nitrogen occurs at a potential where oxidation is not observed at the bare glassy carbon electrode. The overall number of electrons involved in the catalytic oxidation of hydrazine was determined by cyclic voltammetry and rotating disk electrode experiments. A Tafel plots indicated a one-electron charge transfer process to be the rate-limiting step and the overall number of electrons involved in the catalytic oxidation of hydrazine was found to be four. It has been shown that the catalytic oxidation of hydrazine obeys fist-order kinetics with respect to hydrazine concentration. The diffusion coefficient of hydrazine was also estimated using chronoamperometry, presenting a value of 1,2 x 10-5 cm2 s-1. |