Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: AZEVEDO JÚNIOR, Arnaldo Pinheiro de lattes
Orientador(a): SERRA, Ginalber Luiz de Oliveira lattes
Banca de defesa: SERRA, Ginalber Luiz de Oliveira lattes, SOUZA, Francisco das Chagas de lattes, BARRETO, Gilmar lattes, ROCHA FILHO, Orlando Donato lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2418
Resumo: The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature.