ESTUDO TEÓRICO E COMPUTACIONAL DO ELETRÓLITO SÓLIDO Li3OCl PARA BATERIAS DE ÍON DE LÍTIO.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: PRADO, Rodolpho Mouta Monte lattes
Orientador(a): PASCHOAL, Carlos William de Araújo lattes
Banca de defesa: MOREIRA, Andre Auto lattes, MACIEL, Adeilton Pereira lattes, MENDES, Gabriel Alves lattes, DINIZ, Eduardo Moraes lattes, PASCHOAL, Carlos William de Araujo lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA/CCET
Departamento: DEPARTAMENTO DE FÍSICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/3267
Resumo: Commercial liquid electrolytes used in lithium ion batteries are flammable, so researchers have been looking for solid replacements with equal performance. Here we investigated a particular solid electrolyte, Li3OCl, presenting compatibility with the ideal anode for such batteries (Li metal), which has the potential to increase batteries’ power density, but whose ionic conductivity is still unsatisfactory, which tends to decrease their power density. Our approach involved the joint use of statistical thermodynamics and computational modeling via the GULP code, aiming gathering insights that allowed us to suggest ways to increase ionic conductivity of this material. The concentration of thermally activated vacancies in Li3OCl was found to be very low, so to increase this material’s ionic conductivity it is important to artificially generate charge carriers, by either doping or nonstoichiometry. Out of these two strategies, nonstoichiometry is probably the best one, as LiCl deficiency is expected to create lithium interstitials, which have much lower mobility than vacancies. It was also found that one can increase this material’s conductivity by orders of magnitude via epitaxial strain engineering.