Sistema de inferência genético-nebuloso para reconhecimento de voz: Uma abordagem em modelos preditivos de baixa ordem utilizando a transformada cosseno discreta

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Washington Luis Santos lattes
Orientador(a): SERRA, Ginalber Luiz de Oliveira lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/547
Resumo: This thesis proposes a methodology that uses an intelligent system for voice recognition. It uses the definition of intelligent system, as the system has the ability to adapt their behavior to achieve their goals in a variety of environments. It is used also, the definition of Computational Intelligence, as the simulation of intelligent behavior in terms of computational process. In addition the speech signal pre-processing with mel-cepstral coefficients, the discrete cosine transform (DCT) is used to generate a two-dimensional array to model each pattern to be recognized. A Mamdani fuzzy inference system for speech recognition is optimized by genetic algorithm to maximize the amount of correct classification of standards with a reduced number of parameters. The experimental results achieved in speech recognition with the proposed methodology were compared with the Hidden Markov Models-HMM and the classifiers Gaussians Mixtures Models-GMM and Support Vector Machine-SVM. The recognition system used in this thesis was called Intelligent Methodology for Speech Recognition-IMSR