Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Silva, Washington Luis Santos
 |
Orientador(a): |
SERRA, Ginalber Luiz de Oliveira
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
Engenharia
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/547
|
Resumo: |
This thesis proposes a methodology that uses an intelligent system for voice recognition. It uses the definition of intelligent system, as the system has the ability to adapt their behavior to achieve their goals in a variety of environments. It is used also, the definition of Computational Intelligence, as the simulation of intelligent behavior in terms of computational process. In addition the speech signal pre-processing with mel-cepstral coefficients, the discrete cosine transform (DCT) is used to generate a two-dimensional array to model each pattern to be recognized. A Mamdani fuzzy inference system for speech recognition is optimized by genetic algorithm to maximize the amount of correct classification of standards with a reduced number of parameters. The experimental results achieved in speech recognition with the proposed methodology were compared with the Hidden Markov Models-HMM and the classifiers Gaussians Mixtures Models-GMM and Support Vector Machine-SVM. The recognition system used in this thesis was called Intelligent Methodology for Speech Recognition-IMSR |