Diagnóstico de glaucoma a partir de imagens de fundo de olho utilizando índices de diversidade

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ARAUJO, Jose Denes Lima lattes
Orientador(a): PAIVA, Anselmo Cardoso de lattes
Banca de defesa: PAIVA, Anselmo Cardoso de lattes, SILVA, Aristófanes Corrêa lattes, BRAZ JUNIOR, Geraldo lattes, AIRES, Kelson Romulo Teixeira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: COORDENAÇÃO DO CURSO DE CIÊNCIAS DA COMPUTAÇÃO/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2120
Resumo: Glaucoma is one of the leading causes of blindness worldwide, and is usually caused by an increase in the intraocular pressure that damages the optic nerve and gradually causes vision loss. It is a disease that has no symptoms in the early stages and its early diagnosis can prevent the vision loss and blindness. Fundus images are used by experts to examine the optic disc in order to identify the changes caused by glaucoma. In addition, image processing and pattern recognition techniques are used for the development of computational tools in order to provide support in the process of analyzing these images. This work proposes a methodology for the glaucoma diagnosis from fundus images using diversity indexes as texture descriptors. After extraction of texture features, genetic algorithms are used to select the best set of features. Finally, the support vector machine is used to perform the classification. The proposed methodology revealed promising results for glaucoma diagnosis, reaching accuracy of 93.41%, sensitivity of 92.36% and specificity of 95.05%, as best results