Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ferreira, Ernesto Franklin Marçal
 |
Orientador(a): |
FONSECA NETO, João Viana da |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/1687
|
Resumo: |
The development and the numerical stability analysis of a new adaptive critic algorithm to approximate the state-value function for online discrete linear quadratic regulator (DLQR) optimal control system design based on heuristic dynamic programming (HDP) are presented in this work. The proposed algorithm makes use of unitary transformations and QR decomposition methods to improve the online learning e-ciency in the critic network through the recursive least-squares (RLS) approach. The developed learning strategy provides computational performance improvements in terms of numerical stability and computational cost which aim at making possible the implementations in real time of optimal control design methodology based upon actor-critic reinforcement learning paradigms. The convergence behavior and numerical stability of the proposed online algorithm, called RLSµ-QR-HDP-DLQR, are evaluated by computational simulations in three Multiple-Input and Multiple-Output (MIMO) models, that represent the automatic pilot of an F-16 aircraft of third order, a fourth order RLC circuit with two input voltages and two controllable voltage levels, and a doubly-fed induction generator with six inputs and six outputs for wind energy conversion systems. |