Método de detecção de massas em mamas densas usando análise de componentes independentes

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: SILVA, Luis Claudio de Oliveira lattes
Orientador(a): BARROS FILHO, Allan Kardec Duailibe lattes
Banca de defesa: SANTANA, Ewaldo Eder Carvalho lattes, FONSECA NETO, João Viana da lattes, RIBEIRO, Aurea Celeste da Costa lattes, OLIVEIRA, Fausto Lucena de lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1897
Resumo: Breast cancer is the second type of cancer that most a ects women in the world, losing only for non melanoma skin cancer. Breast density can hinder the location of masses, especially in early stages. In this work, the use of independent component analysis for detecting and segmentation lesions in dense breasts is proposed. Several works suggests the use of computer aided diagnosis, increasing sensitivity to over 90% in detecting cancer in non dense breasts, however there are few published studies about detecting in dense breasts. To analyse its e ciency in relation to other segmentation techniques, we compare the performance with principal component analysis. To measure the quality of the segmentation obtained by the two methods, a area overlay measure will be used. To verify if there was any di erence between the results of the proposed methods in the detection of lesions in nondense breasts and in dense breasts, a statistic test for two proportions was used. Experimental results on the Mini-MIAS and DDSM database showed an accuracy of 92.71% in detecting masses in nondense and 79.17% in dense breasts. All experiments showed that the ICA lters have a better performance for detect lesions in dense breast, compared with PCA. Contrary to previous works, our experiments showed that there is actually a signi cant di erence between the detection of masses in dense and nondense breasts. This study can help specialist to detect lesions in dense breast.