Algoritmos genéticos de otimização aplicados em processos de soldagem GMAW

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Moura, Marcus Vinicius Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Administração e Economia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/46112
Resumo: The welding process plays an important role in the manufacture of various products in the most varied industrial sectors. Despite its wide applicability, this process is subject to some inconsistency in quality due to controllable and uncontrollable variables. In this work, using the Finite Element Method (FEM), we tried to simulate the movement of the heat flow in the base metal, submitted to the Gas Metal Arc Welding (GMAW) welding process. For that, control limits were established, such as voltage and electric current (in the form of the heat source) and welding speed in order to obtain optimized values of deformations and stresses, arising from the welding process used. As stresses and strains are inversely proportional quantities, we worked with a multiobjective function to find an optimized solution. For the modeling of the process, empirical data from weld beads applied on both sides of ASTM A36 steel plates were used in the "T"configuration (type joint "T"). As a support for the simulations, the multiobjective Genetic Algorithm Non-dominated Sorting Genetic Algorithm II (NSGA II) in conjunction with the Finite Element Method (FEM), via ANSYS 14.5 software. The results obtained were consistent with literature data within the pre-established limits, that is, deformation and stress less than 2 mm and 600 MPa, respectively. This demonstrates the potential of using the FEM in conjunction with the NSGA II genetic algorithm to predict input variables in the welding process, which can be considered an important contribution to the technological advancement of the GMAW welding process.