Aprimoramento de um algoritmo de roteamento baseado em aprendizado por reforço: um estudo de caso usando VoIP

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Militani, Davi Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Ciência da Computação
UFLA
brasil
Departamento de Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
QoE
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/46116
Resumo: The channel capacity, the routers processing capability, and the routing algorithms are some of the main factors that directly impact on network performance. Network parameters such as packet loss, throughput, and delay affect the users’ quality–of–experience in different multimedia services. Routing algorithms are responsible for choosing the best route between a source node to a destination. However, conventional routing algorithms do not consider the history of the network data when making about, for example, overhead or recurring equipment failures. Therefore, it is expected that routing algorithms based on machine learning that use the network history for decision making present some advantages. Nevertheless, in a routing algorithm based on reinforcement learning (RL) technique, additional control message headers could be required. In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in which the control message overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is implemented to compensate for the overhead generated by the use of RL. Different ad-hoc network scenarios are implemented in which network performance parameters, such as packet loss, delay, throughput and overhead are obtained. In addition, a Voice over IP (VoIP) communication scenario is implemented, in which E-model algorithm is used to predict the communication quality. For performance comparison, the OLSR, BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both network parameters and VoIP quality.