Aplicação de modelos matemáticos de inteligência computacional na predição da resistência à compressão axial de concreto de cimento Portland

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Tavares, Dennis Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Engenharia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/48344
Resumo: The axial compressive strength is the main property of concrete, the structural material most used worldwide, but there are no empirical equations that provide, easily and quickly, reliable and accurate results for prediction of this important property that is directly related to structural performance and safety of civil construction works. Concrete dosage and compressive strength prediction are obtained through laboratory tests conducted from successive adjustments in pilot batches, which requires time and consumption of materials. The objective of this work is to apply the technologies of computational intelligence, Artificial Neural Networks and Fuzzy Logic for predicting the axial compressive strength of concrete, from a database consisting of 1030 samples with different proportions of constituent materials and age of curing. Several configurations were tested until the choice of an Artificial Neural Network of feedforward architecture of the multilayer-perceptron (MLP) model with one input layer, two hidden layers and one output layer. It was also developed several fuzzy systems with different methods of inference and defuzzification that were statistically evaluated, being possible to verify that the methods of inference and defuzzification adopted influence the final result and the best system was with Mamdani inference and defuzzification center of area (centroid). The models developed with Mamdani inference and centroid, bisector and mom defuzzification, besides Sugeno inference with wtaver and wtsum defuzzification proved to be reliable and capable of providing high precision results, which shows the promise of applying computational intelligence models to concrete technology, contributing to the advancement of the industrialization and automation of civil construction.