Combinação de previsões: uma abordagem usando wavelets

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Ahmed, Mohamed Lemine Ould Sid
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação em Estatística e Experimentação Agropecuária
UFLA
brasil
Departamento de Ciências Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufla.br/jspui/handle/1/29059
Resumo: The reason behind the importance of accurate forecasting of flow of tributaries lies in the fact that they are crucial to hydrological resources planning, which directly impacts many aspects of the economic and social activities. In this work, a hybrid method of combining times series forecasts is applied. Wavelet analysis is implemented, together with SARIMA models and multi-objective nonlinear mathematical programming. At first, the time series to be analyzed is decomposed via Maximal Overlap Discrete Wavelet Transform (MODWT) up to a certain level of resolution. Subsequently, SARIMA models are used to, individually, model and generate forecasts for every wavelet component. In the last stage, mathematical optimization is used to generate forecasts for the original time series in the form of the optimal linear combination of the wavelet components’ forecasts, previously obtained by SARIMA models. The method was applied to the time series of the monthly flow of tributaries of Samuel’s dam in the state of Rondônia. In terms of predictive gains, pure SARIMA model produced better results.