Métodos de inteligência computacional com otimização evolucionária para a estimativa de propriedades mecânicas do concreto de agregado leve

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Andrade, Jonata Jefferson lattes
Orientador(a): Fonseca, Leonardo Goliatt da lattes
Banca de defesa: Farage, Michèle Cristina Resende lattes, Oliveira, Fabrízzio Condé de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/6091
Resumo: No concreto de agregado leve, a resistência à compressão e o módulo de elasticidade são as propriedades mecânicas mais importantes e consequentemente as mais comumente analisadas. A relação entre os componentes do concreto de agregado leve e suas propriedades mecânicas é altamente não linear, e o estabelecimento de um modelo de previsão abrangente de tais características é usualmente problemático. Existem trabalhos que buscam encontrar essa relação de formas empíricas. Há também trabalhos que buscam aplicar técnicas de inteligência computacional para prever essas propriedades a partir dos componentes do concreto. Prever com precisão as propriedades mecânicas do concreto de agregado leve é um problema crítico em projetos de engenharia que utilizam esse material. O objetivo desta dissertação é avaliar o desempenho de diferentes métodos de inteligência computacional para prever a módulo de elasticidade e a resistência à compressão aos 28 dias de concretos de agregados leves em função do fator água/cimento, volume de agregado leve, quantidade de cimento e densidade do agregado leve. Para a escolha da melhor configuração de cada método, foi definida uma metodologia utilizando o algoritmo de otimização PSO (Particle Swarm Optmization). Por fim, é verificada a capacidade de generalização dos métodos através do processo de validação cruzada de modo a encontrar o método que apresenta o melhor desempenho na aproximação das duas propriedades mecânicas.