Hibridização de Programação Genética Gramatical com estratégia evolutiva e evolução diferencial aplicada a problemas de regressão simbólica e de classificação

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Motta, Flavio Andrade Amaral lattes
Orientador(a): Bernardino, Heder Soares lattes
Banca de defesa: Borges, Carlos Cristiano Hasenclever lattes, Porto, Luismar Marques lattes, Angelo, Jaqueline da Silva lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/8287
Resumo: A Regressão simbólica consiste na manipulação de expressões matemáticas para encon-trar uma função que melhor representa um conjunto de dados. Já problemas de classifica-ção podem ser entendidos como o efeito de dispor por classes um conjunto de elementos. Técnicas computacionais foram desenvolvidas para resolver esses tipos de problema, a Programação Genética (PG) é uma delas. Uma vantagem dessa técnica é o fato de produ-zir modelos simbólicos que são possíveis de serem interpretados. A Programação Genética Gramatical (PGG) surgiu com o uso de gramáticas formais para auxiliar a busca desses modelos. Um problema da PGG é o ajuste de coeficientes, já que apenas valores gerados pela gramática podem aparecer dentro de um modelo. Diferentes formas de hibridização de PGG são utilizadas neste trabalho para ajuste de coeficientes. Evolução Diferencial (ED) e Estratégia Evolutiva (EE) são técnicas de otimização contínua e o objetivo deste trabalho é de gerar melhores soluções do que uma PGG padrão, ao utilizar essas técnicas para realizar o ajuste dos coeficientes. Foram testados 23 problemas de regressão simbó-lica e 7 de classificação para comparar o desempenho das técnicas propostas com a PGG padrão. Foram encontrados resultados promissores quando comparados a PGG na sua forma padrão.