Uma abordagem baseada em classificadores de larga margem para geração de dados artificiais em bases desbalanceadas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Marques, Marcelo Ladeira lattes
Orientador(a): Borges, Carlos Cristiano Hasenclever lattes
Banca de defesa: Fonseca Neto, Raul lattes, Braga, Antônio de Pádua lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/5906
Resumo: O presente trabalho tem como proposta o desenvolvimento de uma abordagem capaz de melhorar os resultados obtidos por algoritmos de classificação quando aplicados em bases desbalanceadas. O método, denominado Algoritmo de Balanceamento Sintético In-cremental (Incremental Synthetic Balancing Algorithm – ISBA), realiza um procedimento iterativo baseado em classificadores de larga margem, visando gerar amostras sintéticas com o intuito de reduzir o nível de desbalanceamento. No processo são utilizados vetores suporte como referência para a geração das novas instâncias, permitindo posicioná-las em regiões com uma maior representatividade. Além disso, a estratégia permite que as novas amostras ultrapassem os limites das amostras utilizadas como referência para sua geração, o que possibilita uma extrapolação dos limites da classe minoritária, objetivando, assim, alcançar um maior reconhecimento dessa classe de interesse. São apresentados experimentos comparativos com demais técnicas, entre elas o Synthetic Minority Over-sampling Technique (SMOTE), os quais fornecem fortes evidências da aplicabilidade da abordagem proposta.