Uma plataforma de rede definida por software para ambientes de computação paralela e distribuída

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Alexandre Tavares de lattes
Orientador(a): Vieira, Alex Borges lattes
Banca de defesa: Correia, Luiz Henrique Andrade lattes, Dantas, Mario Antonio Ribeiro
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/10019
Resumo: O crescimento no volume e na diversidade dos dados causado pelo fenômeno Big Data tem revolucionado os negócios e a ciência, ao mesmo tempo que requer capacidade cada vez maior dos recursos computacionais. As plataformas de computação de alto desempenho (HPC), tradicionalmente empregadas em simulações numéricas massivamente paralelas, oferecem capacidade computacional que pode ser aproveitada na análise de Big Data. No entanto, a confluência de Big Data e HPC, embora pareça ser natural, deve ser examinada sob diversos aspectos, o que envolve a adequação de vários de seus elementos. Em particular, a infraestrutura de rede precisa ser eficiente e flexível para ajustar-se às demandas bem distintas das aplicações típicas desses ambientes de computação paralela e distribuída. O paradigma de rede definida por software (SDN) pode favorecer essa integração, graças à sua visão global e seu maior nível de programabilidade, que simplificam a gerência da rede e a tornam mais adaptável e efetiva. Nesse contexto, este trabalho apresenta uma plataforma SDN capaz de suprir os requisitos de desempenho de rede de aplicações Big Data e HPC. A plataforma busca otimizar a comunicação dos dados, identificando o tráfego de rede por meio de uma API e aplicando dinamicamente mecanismos de roteamento mais adequados a cada perfil de tráfego. Essa abordagem evidencia um modelo de rede ciente da aplicação que permite a diminuição no tempo de execução de aplicações. Avaliações mediante simulações em cenários específicos demonstram a viabilidade e a aplicabilidade da plataforma, ao reduzir o tempo médio de execução de aplicações reais MPI em cerca de 11%, e Hadoop em torno de 6%.