Difusão orientada por centralidade em redes complexas dinâmicas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Flores, Abraão Guimarães lattes
Orientador(a): Silva, Ana Paula Couto da lattes
Banca de defesa: Ziviani, Artur lattes, Fonseca Neto, Raul lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4772
Resumo: A dinamicidade é uma característica presente em diversos sistemas reais, tais como redes de comunicação, sociais, biológicas e tecnológicas. Processos de difusão em redes complexas podem surgir, por exemplo, em busca de dados, roteamento de dados e propa gação de doenças. Desta forma, a compreensão do tempo necessário para difusão é um tema de estudo importante em redes complexas dinâmicas. Nesta dissertação é realizado um estudo de como medidas de centralidade podem ajudar na diminuição do tempo de difusão de informação em redes complexas dinâmicas. Usando dados de sistemas reais e sintéticos é mostrado que, se a dinamicidade é desconsiderada, o tempo necessário para difundir uma informação na rede é subestimado. Foram propostos algoritmos de difusão que consideram métricas de centralidade em grafos. Estes algoritmos aceleram o processo de difusão, quando comparados com algoritmos de difusão mais simples, como o Random Walk. Por fim, foi analisado o impacto de um modelo simples de predição de arestas nos algoritmos de difusão baseados em centralidade que foram propostos nesta dissertação.