Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Franco, Victor Rezende
 |
Orientador(a): |
Fonseca, Leonardo Goliatt da
 |
Banca de defesa: |
Borges, Carlos Cristiano Hasenclever
,
Hott, Marcos Cicarini
,
Andrade, Ricardo Guimarães
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/12702
|
Resumo: |
Técnicas computacionais empregadas na fenotipagem e na avaliação das condições da vegetação têm contribuído para o desenvolvimento da produção no campo, de forma sustentável e eficiente. Nesse contexto, o presente trabalho utiliza uma solução mobile para a obtenção de dados fenotípicos de pastagens por meio de imagens fotográficas. Para tanto, fotos de parcelas experimentais de capim Panicum sp foram captadas em dois experimentos. No primeiro experimento foram obtidos dados de biomassa das parcelas, e no segundo experimento foram obtidos dados de altura. Utilizando Visão Computacional, são extraídas características da pastagem fotografada, que são, posteriormente, correlacionadas aos atributos de biomassa e altura das pastagens. Para isso, foram implementadas três técnicas de Aprendizado de Máquina: Regressão LASSO, Regressão por Vetores de Suporte e Rede Perceptron de Múltiplas Camadas. Para seleção do melhor modelo, foi utilizada a técnica de Evolução Diferencial. Para comparar os modelos, foram realizadas trinta repetições da técnica de Evolução Diferencial. Avaliadas utilizando o método de validação cruzada, a técnica que obteve melhor resultado nos dois problemas foi Rede Perceptron de Múltiplas Camadas, obtendo uma média de Coeficiente de Determinação (R2) 0,497 para a técnica que melhor se adaptou na previsão de biomassa e 0,662 para a técnica que melhor se adaptou na previsão de altura da pastagem. Os resultados obtidos indicam que os parâmetros biofísicos de altura e biomassa, podem ser modelados em função de atributos extraídos de imagens de pastagens da espécie forrageira Panicum maximum cv. BRS Zuri, obtidas em campo. Ainda, o software se mostrou de capaz de realizar o georreferenciamento das capturas e realizar o armazenamento dos dados. |