Solução mobile baseada em visão computacional para a estimativa de parâmetros biofísicos aplicados ao monitoramento e manejo de pastagens

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Franco, Victor Rezende lattes
Orientador(a): Fonseca, Leonardo Goliatt da lattes
Banca de defesa: Borges, Carlos Cristiano Hasenclever lattes, Hott, Marcos Cicarini lattes, Andrade, Ricardo Guimarães lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/12702
Resumo: Técnicas computacionais empregadas na fenotipagem e na avaliação das condições da vegetação têm contribuído para o desenvolvimento da produção no campo, de forma sustentável e eficiente. Nesse contexto, o presente trabalho utiliza uma solução mobile para a obtenção de dados fenotípicos de pastagens por meio de imagens fotográficas. Para tanto, fotos de parcelas experimentais de capim Panicum sp foram captadas em dois experimentos. No primeiro experimento foram obtidos dados de biomassa das parcelas, e no segundo experimento foram obtidos dados de altura. Utilizando Visão Computacional, são extraídas características da pastagem fotografada, que são, posteriormente, correlacionadas aos atributos de biomassa e altura das pastagens. Para isso, foram implementadas três técnicas de Aprendizado de Máquina: Regressão LASSO, Regressão por Vetores de Suporte e Rede Perceptron de Múltiplas Camadas. Para seleção do melhor modelo, foi utilizada a técnica de Evolução Diferencial. Para comparar os modelos, foram realizadas trinta repetições da técnica de Evolução Diferencial. Avaliadas utilizando o método de validação cruzada, a técnica que obteve melhor resultado nos dois problemas foi Rede Perceptron de Múltiplas Camadas, obtendo uma média de Coeficiente de Determinação (R2) 0,497 para a técnica que melhor se adaptou na previsão de biomassa e 0,662 para a técnica que melhor se adaptou na previsão de altura da pastagem. Os resultados obtidos indicam que os parâmetros biofísicos de altura e biomassa, podem ser modelados em função de atributos extraídos de imagens de pastagens da espécie forrageira Panicum maximum cv. BRS Zuri, obtidas em campo. Ainda, o software se mostrou de capaz de realizar o georreferenciamento das capturas e realizar o armazenamento dos dados.