Lógica formal e sua aplicação na argumentação matemática

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Alves, Thiago de Oliveira lattes
Orientador(a): Toon, Eduard lattes
Banca de defesa: Miyagaki, Olímpio Hiroshi lattes, Veloso, Marcelo Oliveira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Profissional em Matemática (PROFMAT)
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3248
Resumo: O uso da Lógica é de fundamental importância no desenvolvimento de teorias matemáticas modernas, que buscam deduzir de axiomas e conceitos primitivos todo seu corpo de teoremas e consequências. O objetivo desta dissertação é descrever as ferramentas da Lógica Formal que possam ter aplicações imediatas nas demonstrações de conjecturas e teoremas, trazendo justificativa e significado para as técnicas dedutivas e argumentos normalmente utilizados na Matemática. Além de temas introdutórios sobre argumentação e âmbito da lógica, o trabalho todo é apresentado por método sistemático em busca de um critério formal que possa separar os argumentos válidos dos inválidos. Conclui-se que com uma boa preparação inicial no campo da Lógica Formal, o matemático iniciante possa ter uma referência sobre como proceder estrategicamente nos processos de provas de conjecturas e um conhecimento mais profundo ao entender os motivos da validade dos teoremas que encontrará ao se dedicar a sua área de formação.