BROAD-RS: arquitetura para recomendação de objetos de aprendizagem sensível ao contexto usando agentes e ontologia

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Rezende, Paulo Alceu d` Almeida lattes
Orientador(a): Campos, Fernanda Claudia Alves lattes
Banca de defesa: Braga, Regina Maria Maciel lattes, Santos, Neide dos lattes, Scortegagna, Liamara lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3487
Resumo: Objetos de aprendizagem são quaisquer recursos que possam ajudar no processo de ensino e aprendizagem sendo reutilizados em diversos contextos. Essa reutilização de objetos de aprendizagem mostra seu potencial para acelerar a preparação e a composição de cursos on line. Um sistema de recomendação na área educacional tem por objetivo identificar o perfil do aluno para que seja possível sugerir objetos de aprendizagem adequados às suas preferências. Entretanto, ao considerar o reuso de conteúdos, também se observa a necessidade de adaptação dos mesmos. Aplicações cientes de contexto são aplicações que são capazes de modificar seu comportamento baseado nas informações dos usuários. Uma motivação de usar um sistema sensível ao contexto é garantir a mobilidade transparente e fazer com que aplicações estejam de acordo com os elementos do ambiente. Este trabalho apresenta a arquitetura BROAD-RS (BROAD Recommendation System) capaz de realizar a recomendação de objetos de aprendizagem sensível ao contexto, baseado em uma ontologia para modelagem do perfil e contexto do aluno em um ambiente e-learning e implementado em um sistema multi-agentes.