Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Faria, Mateus Hufnagel Maranha de
 |
Orientador(a): |
Andrade Filho, Luciano Manhães de
 |
Banca de defesa: |
Cerqueira, Augusto Santiago
,
Silva, Leandro Rorigues Manso
,
Ferreira, Danton Diego
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/5398
|
Resumo: |
Este trabalho tem como objetivo a implementação de um sistema de estimação de energia, adequado às condições de alta luminosidade do maior e mais potente colisionador de partículas já construído, o LHC. Agendadas em seu programa de atualização, estas condições aumentam a probabilidade de colisões próton-próton dentro de seus detectores, como o ATLAS. A resposta do calorímetro hadrônico do detector ATLAS, Tilecal, necessita de um tempo de sete cruzamentos de feixe de partículas para gerar um pulso de amplitude proporcional à energia depositada. Neste sentido, aumentar a probabilidade de ocorrência das colisões também intensifica a presença do empilhamento de sinais. Este efeito faz com que o erro aumente na estimativa da amplitude dos sinais gerados na eletrônica de leitura do Tilecal neste ambiente. A interpretação do calorímetro como um canal de comunicação de característica dispersiva faz-se necessária para a recuperação do impulso de entrada, removendo-se, assim, o efeito de empilhamento e proporcionando uma medida direta da deposição de energia em cada cruzamento de feixe. A utilização de técnicas lineares para este propósito mostraram-se eficientes quando comparadas ao método atualmente implementado no sistema de trigger. No entanto, não-linearidades intrínsecas ao canal não podem ser modeladas por estas técnicas. Assim sendo, neste trabalho é proposto um equalizador de canal não-linear baseado em redes neurais artificiais. Através de treinamentos exaustivos, os principais parâmetros que compõem a arquitetura de uma rede neural feedforward foram determinados com o propósito de aliar alta performance e baixa complexidade da rede. O estimador neural mostrou-se robusto em ambientes com alta ocorrência de empilhamento de sinais, além de atender aos requisitos de implementação em hardware dedicado, no qual foi utilizado uma FPGA. Apesar da implementação de funções de ativação não-lineares em hardware com boa precisão consumir bastante recurso computacional, esta limitação foi contornada com a utilização de uma look-up table altamente compacta. Portanto, a rede neural foi quantizada em ponto fixo, visando reduzir ao máximo o número de elementos lógicos utilizados, sem comprometer sua capacidade ao compará-la com a rede implementada em software. |