Filter learning from deep descriptors of fully convolutional siamese network for tracking in videos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Chaves, Hugo Aparecido de Lima França lattes
Orientador(a): Vieira, Marcelo Bernardes lattes
Banca de defesa: Villela, Saulo Moraes, Pedrini, Hélio
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/10957
Resumo: Nos ultimos anos, os avancos em Aprendizado Profundo revolucionaram diversas sub- areas da Visao Computacional, incluindo o Rastreamento de Objetos Visuais. Um tipo especial de rede neural profunda, a Rede Neural Siamesa, chamou a atencao da comunidade especializada em rastreamento. Ela possui baixo custo computacional e alta efi cacia para comparar a similaridade entre objetos. Atualmente, a comunidade cienti ca atingiu resultados notaveis ao aplicar tais redes ao problema de Rastreamento de Objetos Visuais. No entanto, observou-se que limitacoes dessa rede neural impactam negativamente no rastreamento. Superou-se o problema ao se obter um novo descritor para referencia do objeto combinando descritores passados fornecidos pelo rastreador. Em particular, foi proposto a combinacao de sinal de descritores em blocos de memorias de longo e de curto prazo, os quais representam a primeira e a mais recente aparencia do objeto, respectivamente. Um descritor nal e gerado a partir desses blocos de memoria, o qual o rastreador usa como referencia. Este trabalho enfatizou-se na obtencao de um metodo para calcular um banco de ltros otimizado atraves do uso de um algoritmo genetico. O banco de ltros e utilizado entao para gerar a saida da memoria de curto prazo. De acordo com experimentos realizados na base de dados OTB, esta proposta apresenta ganhos em comparacao com a proposta original da SiamFC. Considerando a metrica area abaixo da curva, ha ganhos de 7.4% e 3.0% para os gra cos de precisao e sucesso, respectivamente, tornando este trabalho comparavel a metodos do estato da arte.