Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Carvalho, Mariana Aparecida Souza de
 |
Orientador(a): |
Rocha, Bernardo Martins
 |
Banca de defesa: |
Queiroz, Rafael Alves Bonfim de
,
Oliveira, Rafael Sachetto
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/17029
|
Resumo: |
A identificação esparsa de sistemas dinâmicos orientada a dados consiste em encontrar um conjunto reduzido de variáveis importantes para descrever o comportamento de sistemas complexos. Essa abordagem é crucial para analisar e modelar sistemas complexos em várias áreas científicas e de engenharia. Na área da eletrofisiologia celular, essa técnica pode ser aplicada para identificar modelos descritos por equações diferenciais ordinárias que explicam a geração do potencial de ação no coração. Os modelos computacionais da atividade elétrica cardíaca são essenciais para compreender doenças e desenvolver novas terapias, no entanto, alguns desses modelos matemáticos detalhados contêm centenas de variáveis, contexto este que pode ser favorecido pelo uso da identificação esparsa de sistemas dinâmicos. Neste estudo, foi utilizado o método SINDy (Identificação Esparsa de Dinâmica Não Linear) para encontrar as equações diferenciais associadas à eletrofisiologia celular. Experimentos preliminares com dados simulados dos modelos clássicos FitzHughNagumo e Hodgkin-Huxley mostram resultados promissores ao empregar o método SINDy. Redes neurais do tipo autoencoder acopladas ao método SINDy podem ser usadas para identificar sistemas dinâmicos complexos a partir de dados observados. Nessa configuração, um autoencoder é utilizado para aprender uma representação latente dos dados de entrada, enquanto o método SINDy é empregado para identificar as equações diferenciais que governam a dinâmica do sistema a partir dessa representação latente. Neste estudo, foram feitas identificações sem redução de dimensão de modelos clássicos, para fins de validação do método SINDy-Autoencoder. Uma segunda seção de resultados mostra que é possível realizar a identificação de um modelo de duas variáveis a partir de um modelo com quatro, neste caso o modelo Hodgkin-Huxley. Essa integração permite a descoberta eficiente de modelos matemáticos que descrevem a evolução temporal do sistema, ao mesmo tempo em que captura relações não lineares e complexas entre as variáveis. |