Métodos de análise da função de custo futuro em problemas convexos: aplicação nas metodologias de programação dinâmica estocástica e dual estocástica

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Brandi, Rafael Bruno da Silva lattes
Orientador(a): Marcato, André Luís Marques lattes
Banca de defesa: Finardi, Erlon Cristian lattes, Lima, André Luiz Diniz Souto lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora
Programa de Pós-Graduação: Programa de Pós-graduação em Ciências Biológicas: Imunologia e Doenças Infecto-Parasitárias/Genética e Biotecnologia
Departamento: ICB – Instituto de Ciências Biológicas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/2256
Resumo: O Sistema Elétrico Brasileiro (SEB) apresenta características peculiares devido às grandes dimensões do país e pelo fato da geração elétrica ser proveniente predominantemente de usinas hidráulicas. Como as afluências a estas usinas possuem comportamento estocástico e grandes reservatórios proporcionam ao sistema a capacidade de uma regularização plurianual, a utilização dos recursos hidráulicos deve ser planejada de forma minuciosa em um horizonte de tamanho considerável. Assim, o planejamento da operação de médio prazo compreende um período de 5 a 10 anos com discretização mensal e é realizado por uma cadeia de modelos computacionais tal que o principal modelo desta cadeia é baseado na técnica da Programação Dinâmica Dual Estocástica (PDDE). O objetivo deste trabalho é obter avanços nas metodologias de programação dinâmica atualmente utilizadas. Partindo-se da utilização da inserção iterativa de cortes, implementa-se um modelo computacional para o planejamento da operação de médio prazo baseado na metodologia de Programação Dinâmica Estocástica (PDE) utilizando uma discretização mais eficiente do espaço de estados (PDEE). Além disso, a metodologia proposta de PDE possui um critério de convergência bem definido para o problema, de forma que a inclusão da medida de risco CVaR não altera o processo de avaliação da convergência de forma significante. Dado que a inclusão desta medida de risco à PDDE convencional dificulta a avaliação da convergência do processo pela dificuldade da estimação de um limite superior válido, o critério de convergência proposto na PDEE é, então, base para um novo critério de convergência para a PDDE tal que pode ser aplicado mesmo na consideração do CVaR e não aumenta o custo computacional envolvido. Adicionalmente, obtém-se um critério de convergência mais detalhado em que as séries utilizadas para amostras de afluência podem ser avaliadas individualmente tais que aquelas que, em certo momento, não contribuam de forma determinante para a convergência podem ser descartadas do processo, diminuindo o tempo computacional, ou ainda serem substituídas por novas séries dentro de uma reamostragem mais seletiva dos cenários utilizados na PDDE. As metodologias propostas foram aplicadas para o cálculo do planejamento de médio prazo do SIN baseando-se em subsistemas equivalentes de energia. Observa-se uma melhoria no algoritmo base utilizado para a PDE e que o critério proposto para convergência da PDDE possui validade mesmo quando CVaR é considerado na modelagem.