Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Fritis, Giulia Carvalho
 |
Orientador(a): |
Chapiro, Grigori
 |
Banca de defesa: |
Furtado, Frederico da Cunha
,
Petrova, Yulia,
Pires, Adolfo Puime |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/15343
|
Resumo: |
Motivado pelo deslocamento de espuma em meios porosos com adsorção linear, estendemos trabalhos já existentes para o escoamento bifásico contendo um traçador ativo descrito por um sistema de leis de conservação não estritamente hiperbólico. Resolvemos o problema de Riemann correspondente, apresentando possíveis sequências de ondas que compõem a solução. Apresentamos condições necessárias e suficientes para garantir a compatibilidade de tais ondas, demonstrando a existência de uma solução global. Classificamos as soluções no plano de fase contendo todos os possíveis estados à esquerda e à direita conectados por uma sequência de ondas compatíveis. Indicamos onde a solução é única e onde existem duas sequências de ondas compatíveis diferentes. Apresentamos o modelo implementado no CMG-STARS descrevendo o deslocamento de espuma em meios porosos com adsorção e verificamos que ele satisfaz as propriedades necessárias para aplicar a teoria desenvolvida. Todas as soluções analíticas apresentadas neste trabalho obtiveram bons resultados quando comparadas com simulações numéricas. Apresentamos regiões de parâmetros onde o modelo do CMG-STARS possui uma falta de unicidade da solução no plano de fase, levando a uma perda de estabilidade estrutural. Mostramos também que este modelo é bem posto no sentido de Hadamard, podendo apresentar oscilações numéricas devido à perda de estabilidade estrutural. Apresentamos condições para termos um banco de surfactante ótimo, formado por dois problemas de Riemann, e avaliamos o impacto da adsorção. |