Esquemas centrais para leis de conservação em meios porosos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Tristão, Denise Schimitz de Carvalho lattes
Orientador(a): Correa, Maicon Ribeiro lattes
Banca de defesa: Toledo, Elson Magalhães lattes, Malta, Sandra Mara Cardoso lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/3521
Resumo: O desenvolvimento de modelos matemáticos e métodos computacionais para a simulação de escoamentos em meios porosos é de grande interesse, devido à sua aplicação em diversas áreas da engenharia e ciências aplicadas. Em geral, na simulação numérica de um modelo de escoamento em meios porosos, são adotadas estratégias de desacoplamento dos sistemas de equações diferenciais parciais que o compõem. Este estudo recai sobre esquemas numéricos para leis de conservação hiperbólicas, cuja aproximação é não-trivial. Os esquemas de volumes finitos de alta resolução baseados no algoritmo REA (Reconstruct, Evolve, Average) têm sido empregados com considerável sucesso para a aproximação de leis de conservação. Recentemente, esquemas centrais de alta ordem, baseados nos métodos de Lax-Friedrichs e de Rusanov (Local Lax-Friedrichs) têm sido apresentados de forma a reduzir a excessiva difusão numérica característica destes esquemas de primeira ordem. Nesta dissertação apresentamos o estudo e a aplicação de esquemas de volumes finitos centrais de alta ordem para equações hiperbólicas que aparecem na modelagem de escoamentos em meios porosos.