Modelo para detecção de anomalias na quantidade de sódio encontrado em amostras de óleo lubrificante de locomotivas para suportar a tomada de decisão para manutenção/inspeção

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Gomes, Guilherme Souza lattes
Orientador(a): Villela, Saulo Moraes lattes
Banca de defesa: Pagotto, Carlos Renato lattes, Vieira, Vinicius da Fonseca lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://doi.org/10.34019/ufjf/di/2022/00437
https://repositorio.ufjf.br/jspui/handle/ufjf/16574
Resumo: A manutenção preventiva de locomotivas apresenta-se como tarefa crucial para que se tenha o funcionamento adequado, principalmente em relação a problemas não previstos e prematuros que geram indisponibilidade do equipamento podendo afetar todo o planejamento e cronograma operacional da frota. Diversos são os indícios indicativos de anomalias no equipamento que, se adequadamente monitorados podem promover um desempenho dentro do previsto para o equipamento inclusive aumentado sua vida útil. Este trabalho objetivou o desenvolvimento de um protótipo de tomada de decisão em relação as máquinas visando servir de ferramenta complementar de suporte ao especialista. O modelo foi desenvolvido usando o nível de sódio presente em séries históricas de medições dos equipamentos. Baseia-se, basicamente, na distorção entre o valor predito por uma estratégia de aprendizado de máquina ou estatística em relação ao valor obtido em ensaio. Tal distorção serviu de referência para a determinação de regras, em conjunto com o especialista, visando a tomada de decisão em diversos níveis de alerta. O uso de modelos lineares de interpolação, regressão e autorregressão permitiu uma avaliação simples do padrão mais adequado para o processo de predição, inclusive determinando métodos que apresentam melhor eficiência.