Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Almeida, Cássio Danelon de
 |
Orientador(a): |
Fonseca, Leonardo Goliatt da
 |
Banca de defesa: |
Borges, Carlos Cristiano Hasenclever
,
Caldeira, Lecino
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/11640
|
Resumo: |
A análise microestrutural de um material permite a completa caracterização de suas propriedades mecânicas. Assim, o desempenho de um componente mecânico depende fortemente da identificação e quantificação de seus constituintes microestruturais. Atualmente, este processo ainda é feito manualmente por especialistas, tornando-o lento, muito trabalhoso e ineficiente. Estima-se que um especialista experiente leve em média 15 minutos por imagem para realizar a identificação e quantificação adequada de microconstituintes. Portanto, uma ferramenta computacional poderia ajudar bastante a melhorar o desempenho nesta tarefa. No entanto, uma vez que uma microestrutura pode ser uma combinação de diferentes fases ou constituintes com subestruturas complexas, sua quantificação automática pode ser muito difícil e, como resultado, há poucos trabalhos anteriores lidando com este problema. Redes Neurais Convolucionais são promissoras para este tipo de aplicação, já que recentemente esse tipo de rede tem alcançado grande performance em aplicações complexas de visão computacional. Neste trabalho, propomos uma quantificação automática de constituintes microestruturais de aço de baixo carbono via Redes Neurais Convolucionais. Nosso conjunto de dados consiste em 210 micrografias de aço de baixo carbono, e essa quantidade de imagens foi aumentada através de técnicas de aumento dos dados, resultando em um total de 720 amostras para treinamento. Com relação às arquiteturas de rede, foi utilizado as redes AlexNet e VGG16 treinadas do zero, e VGG19, Xception e InceptionV3 todas pré-treinadas. Os resultados mostraram que as CNNs podem quantificar microestruturas de forma muito eficaz. |