Modelagem multivariada para determinação de propriedades físico-químicas de petróleo e para quantificação de edulcorantes artificiais em adoçantes de mesa

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Duarte, Lucas Mattos lattes
Orientador(a): Oliveira, Marcone Augusto Leal de lattes
Banca de defesa: Aguiar, Paula Fernandes de lattes, Sousa, Rafael Arromba de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora
Programa de Pós-Graduação: Programa de Pós-graduação em Química
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
PLS
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/315
Resumo: O desenvolvimento de metodologias de análise que sejam rápidas, robustas e de baixo custo é um dos grandes focos da química analítica moderna. A aplicação de técnicas espectroscópicas associadas à modelagens multivariadas, com o intuito de realizar inferências quantitativas, vem apresentando grande crescimento ao longo dos últimos anos. O presente trabalho visa o desenvolvimento de metodologias analíticas, por meio da aplicação de diferentes técnicas espectroscópicas, aliadas à regressão por Mínimos Quadrados Parciais (PLS), para duas aplicações diferentes. A primeira consiste na determinação de algumas propriedades físico-químicas de petróleo e a segunda na determinação da concentração de quatro edulcorantes artificiais em amostras de adoçantes de mesa. Em relação ao petróleo, este é formado basicamente por diferentes famílias de hidrocarbonetos, apresentando uma enorme gama de compostos. A composição complexa da matriz faz com que sua avaliação envolva um grande número de análises físico-químicas, o que torna sua caracterização de alto custo e demorada, podendo chegar a um ano. Nessa primeira parte, foram construídos modelos de PLS a partir de dados de Ressonância Magnética Nuclear para o núcleo de Hidrogênio (1H-RMN), para determinar as propriedades gravidade API, resíduo de carbono (RC) e temperatura inicial de aparecimento de cristais (TIAC), além de simular a curva de temperaturas de ebulição para as frações destiladas (SimDis). As curvas obtidas por essa metodologia foram chamadas de “curva de Pontos de Ebulição Estimadas por Quimiometria (PEEQ)”. Na segunda parte do trabalho, foram construídos modelos multivariados pela aplicação de PLS aos dados de espectroscopia Raman e de Infravermelho Próximo (NIR), para quantificação de Aspartame (ASP), Ciclamato (CIC), Sacarina (SAC) e Acesulfame-K (ACSK), em amostra de adoçante de mesa em pó. Para tanto, o método de referência utilizado para fornecer a informação de concentração referentes aos analitos, foi a Cromatografia Líquida com detecção por Espectrometria de Massas (LC-MS). Os modelos de NIR-PLS foram mais eficazes na previsão de ASP, CIC e SAC, enquanto o modelo de Raman-PLS respondeu melhor para o ACSK. Todos os modelos, pra ambas as partes, foram avaliados com base nos seguintes parâmetros de modelagem: número de Variáveis Latentes (LVs), Coeficiente de Correlação para a Validação Cruzada e para Previsão (R2vc e R2p, respectivamente), Raiz quadrada do Erro Quadrático Médio para Validação Cruzada e para Previsão (RMSECV e RMSEP, respectivamente). Por fim, os resíduos de cada modelo construído foram submetidos a testes estatísticos para avaliação de erros sistemáticos e erros de tendência.