Modelos hidrológicos híbridos para a bacia do rio Paraíba do Sul: acoplando redes neurais artificiais com transformada wavelet para previsão de vazão em curto prazo com ênfase na previsão de vazões extremas
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , , |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/te/2022/00078 https://repositorio.ufjf.br/jspui/handle/ufjf/14654 |
Resumo: | O rio Paraíba do Sul flui através da mais importante região industrial do Brasil, entre as cidades do Rio de Janeiro e de São Paulo. De acordo com a Agência Nacional de Águas, a bacia do rio Paraíba do Sul é caracterizada por conflitos de usos múltiplos de recursos hídricos (abastecimento urbano, diluição de esgotos, irrigação e geração de energia hidrelétrica). Em função de sua importância, o desenvolvimento de modelos precisos de previsão de vazão pode assumir valor estratégico para a gestão da quantidade e da qualidade de água nesta bacia. Estes modelos podem apoiar a tomada de decisão de gestores públicos sobre alertas para condições extremas de inundação ou seca e pode se tornar um elemento-chave para proteger a sociedade e favorecer uma reação oportuna, reduzindo efetivamente danos socioeconômicos. Os modelos baseados na inteligência artificial têm sido aplicados com sucesso para resolver problemas não-lineares em hidrologia. Nas últimas duas décadas, a transformada wavelet, uma técnica de pré-processamento de dados, tem sido estudada para uso em análise de séries temporais e tem se mostrado muito eficaz em dados não estacionários. A transformada wavelet divide as séries temporais originais em subcomponentes que servem como entradas para modelos de inteligência artificial. Assim, fornecem uma representação de tempo-frequência de um sinal em diferentes períodos no domínio do tempo, além de informações sobre a estrutura física de dados. Esta pesquisa visa contribuir com o fornecimento de uma metodologia de desenvolvimento de dois tipos de modelos híbridos chamados WANNone e WANNmulti acoplando redes neurais artificiais com uma técnica de pré-processamento de dados baseada em transformada wavelet À T rous. Os modelos desenvolvidos são aplicados para previsão de vazão natural média diária de 1, 3, 5 e 7 dias à frente em 8 estações fluviométricas localizadas na bacia do rio Paraíba do Sul. O desempenho dos modelos baseados em wavelets e redes neurais artificiais é comparado com o dos modelos convencionais de redes neurais artificiais (ANN). Os resultados revelam que o desempenho dos modelos WANNone e WANNmulti são significativamente superiores aos modelos ANN em termos de medidas de eficiência da previsão MAPE, RMSE e R2 em todos os horizontes de previsão testados para todas as estações modeladas. Em termos de aplicabilidade a determinados cenários, o modelo WANNmulti consegue representar melhor os ciclos de vazões baixas, em cenários de seca, ao passo em que WANNone consegue acompanhar melhor a magnitude das vazões extremas altas, em situações de risco de inundação. |