Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Bóbó, Míria Luísa das Dores Ramos
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Campos, Fernanda Cláudia Alves
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Costa, Rosa Maria Esteves Moreira da,
Torrent, Tiago Timponi,
David, José Maria Nazar |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/11218
|
Resumo: |
A Análise de Sentimento ou Mineração de Opinião é uma subárea da mineração de texto que tem como objetivo detectar as opiniões, sentimentos ou emoções expressas em um texto. Ela é uma área multidisciplinar que engloba desde técnicas simples de Processamento de Linguagem Natural até algoritmos sofisticados de Aprendizagem de Máquina. Ela necessita de bases de treinamento ou léxicos que contemplem as peculiaridades do contexto em que é aplicada. Assim sendo, este trabalho se propõe a contribuir no campo de Mineração de Opinião apresentando uma arquitetura de Análise de Sentimento que usa a FrameNet como parte de sua abordagem lexical, com o objetivo de descobrir o estado emocional do autor do texto, através do emprego de diferentes tipos de dados. Esta dissertação também apresenta uma rede polarizada de frames desenvolvida a partir da estrutura tradicional da FrameNet, visando detectar a polaridade das palavras através da identificação dos frames evocados. Um estudo de caso foi conduzido com o apoio de especialistas e os resultados evidenciam a empregabilidade da FrameNet como uma abordagem lexical de análise de sentimento. |