Otimização multiobjetivo do leito de fusão para altos-fornos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Guimarães, Pedro Gabriel da Silva lattes
Orientador(a): Borges, Carlos Cristiano H. lattes
Banca de defesa: Fonseca Neto, Raul lattes, Santo, Marcelo Costa Pinto e lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/12133
Resumo: Neste trabalho é apresentado um modelo de otimização multiobjetivo para apoiar no orçamento de cargas para o consumo em altos-fornos na fabricação de ferro-gusa, principal material na produção do aço. Dado um conjunto de matérias-primas e restrições de fabricação como disponibilidade dos materiais, características objetivadas para o produto final, etc, deseja-se calcular a quantidade de cada matéria-prima a ser enfornada que gere as soluções com os menores custos e desperdício. Devido ao interesse em objetivos conflitantes, um modelo evolutivo multiobjetivo foi desenvolvido com o acoplamento de componentes específicos construídos com base nas características das variáveis de decisão que compõem o problema, estas que se dividem em variáveis com normalização e sem normalização. Desta forma, modelos de projeção das variáveis são apresentados em conjunto com uma estratégia de evolução intra-indivíduo, visando um incremento na eficiência e qualidade das soluções obtidas. A evolução intra-indivíduo consiste em etapas que envolvem mutação por permutação, um método de projeção específico e uma otimização secundária em parte das variáveis de decisão, construída por meio de um modelo de inteligência de enxame, o algoritmo de enxame de partículas (PSO). O modelo mostrou-se ser bastante efetivo e útil ao imprimir vários cenários de maneira rápida para auxiliar na tomada de decisões para o orçamento de matérias-primas.