Existência de medidas invariantes para aplicações no intervalo com presença de pontos críticos e singularidades

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Montoya, Jorge Luis Abanto lattes
Orientador(a): Soares Junior, Regis Castijos Alves lattes
Banca de defesa: Fernández, Laura Senos Lacerda lattes, Correa, Andre Junqueira da Silva lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/2267
Resumo: Provaremos a existência de medidas de probabilidade invariantes absolutamente contínuas com respeito à medida de Lebesgue. Aqui trabalhamos com uma classe de funções que denotamos por F, esta classe consiste de aplicações no intervalo f : M ! M, que possuem pontos críticos e singularidades mais outras propriedades. É preciso mencionar que uma das propriedades é a condição de somabilidade ao longo da órbita crítica que vai ajudar a ter resultados importantes para nosso trabalho. O resultado principal diz que, para cada f 2 F existe uma medida de probabilidade invariante absolutamente contínua. Para conseguir este resultado, provaremos um teorema auxiliar que trata da existência de uma partição enumerável I de intervalos abertos de M, de uma aplicação que chamamos tempo induzido : M ! N que é constante nos elementos da partição I, tal que a aplicação ˆ f : M ! M definida por ˆ f = f que chamamos aplicação induzida, satisfaz três propriedades importantes que são, expansão, variação somável e tempo induzido somável. Por isso ao longo do trabalho vamos concentrar em provar essas três propriedades. O ponto importante é que as duas primeiras propriedades junto com o teorema A garantem a existência de uma medida de probabilidade absolutamente contínua para ˆ f, finalmente utilizando a terceira propriedade junto com a proposição A, obtemos a existência de uma medida de probabilidade absolutamente contínua para nossa f.