Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Souza, David de Melo
 |
Orientador(a): |
Nóbrega, Rafael Antunes
 |
Banca de defesa: |
Cerqueira, Augusto Santiago
,
Kemp, Ernesto
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/8922
|
Resumo: |
Nas últimas décadas, a sinergia entre engenharia e física, nas áreas de aplicação da física moderna, tem sido crescente. Para o programa de física do ATLAS, no CERN, por exemplo, a identificação de elétrons é de fundamental importância, sendo uma de-manda responsável por diversos estudos em engenharia. Esse trabalho se desenvolve nesse viés, tendo como base a técnica de verossimilhança utilizada pela colaboração ATLAS na identificação offline de elétrons relevantes, considerados sinal, em meio a diversas partículas, consideradas ruído de fundo. Atualmente, a verossimilhança tem sido aplicada pela colaboração de forma simplificada, supondo independência entre as variáveis discriminantes fornecidas pelo detector ATLAS. Essa consideração, possibi-lita que a formulação matemática da probabilidade conjunta seja feita pela utilização do produtório das densidades marginais das variáveis discriminantes. Entretanto, a simplificação promove um erro na reconstrução da probabilidade conjunta, visto que, algumas variáveis discriminantes possuem um certo grau de dependência entre si. Esse cenário, nos abre a possibilidade de melhora do método, a partir de técnicas capazes de mitigar a dependência entre tais varáveis. A principal contribuição desse trabalho se dá na implementação de um algoritmo baseado na técnica não-paramétrica para estima-ção de densidade multivariada conhecida como MKDE (do inglês, Multivariate Kernel Density Estimation), com o objetivo de minimizar o erro de estimação da probabilidade conjunta, que ocorre devido à consideração de independência acima citada. Dentro da realidade comparativa deste trabalho, foi possível observar a melhora na estimação da probabilidade conjunta via MKDE e a propagação desta melhora na identificação de elétrons. |