Aplicações de handover inteligente em redes celulares baseadas em aprendizado de máquina
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2022/00167 https://repositorio.ufjf.br/jspui/handle/ufjf/14538 |
Resumo: | Este trabalho se dedica a estudar, implementar e avaliar diferentes estratégias para a integração de modelos de Inteligência Artificial e Aprendizado de Máquina em procedimentos de handover em redes celulares. As propostas de arquitetura para implementação são desenvolvidas baseadas em dados obtidos através de simulações de redes LTE (Long Term Evolution) utilizando o simulador ns-3, bem como campanhas de coletas de dados em rede real de uma empresa operadora celular em Belo Horizonte. Os resultados observados demonstram grande capacidade dos modelos em gerar respostas com alto grau de acurácia e baixos valores de desvio padrão, tanto em tarefas de classificação, quanto naquelas de regressão propostas. São contemplados diversos modelos presentes na literatura ao longo das avaliações, desde alguns muito consolidados, como máquinas de vetores de suporte, aqueles com arquitetura baseada em árvores, redes neurais artificiais, bem como sistemas fuzzy, redes neurais LSTM, além de avançadas máquinas boosting. |