Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Machado, Lucas Corrêa Netto
 |
Orientador(a): |
Honório, Leonardo de Mello
 |
Banca de defesa: |
Moraes, Carlos Henrique Valério de
,
Oliveira, Edimar José de
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/4164
|
Resumo: |
Este trabalho apresenta uma técnica para treinamento de Redes Neurais Artificiais (RNA), capaz de obter os parâmetros da rede através dos dados disponíveis para treinamento, sem necessidade de estabelecer a arquitetura da rede a priori, denominado Método de Segmentações Geométricas Sucessivas (MSGS). O MSGS agrupa os dados de cada classe em Hipercaixa (HC) onde cada caixa é alinhada de acordo com os eixos de maior distribuição de seu conjunto de pontos. Sendo as caixas linearmente separáveis, um hiperplano de separação é identificado originando um neurônio. Caso não seja possível a separação por um único hiperplano, uma técnica de quebra é aplicada para dividir os dados em classes menores para obter novas HCs. Para cada subdivisão novos neurônios são adicionados à rede. Os resultados dos testes realizados apontam para um método rápido e com alta taxa de sucesso. |