An IoT architecture for decision support system in precision livestock
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2023/00084 https://repositorio.ufjf.br/jspui/handle/ufjf/15455 |
Resumo: | Na indústria pecuária, a produção animal sustentável é o principal objetivo do desenvolvimento tecnológico. Porém, é fundamental manter boas condições no ambiente devido à suscetibilidade dos animais a variáveis como temperatura e umidade, que podem causar doenças, perdas de produção e desconforto. Assim, os sistemas de produção pecuária requerem monitoramento, controle e mitigação das condições indesejadas através de ações automatizadas. A principal contribuição deste estudo é a introdução de uma arquitetura auto-adaptativa denominada e-Livestock para apoiar as decisões relacionadas à produção animal. Foram conduzidos dois estudos de caso, envolvendo a arquitetura e-Livestock, que foi utilizada no sistema de produção Compost Barn - ambiente e tecnologia onde ocorre a produção de gado leiteiro. Os resultados demonstraram a utilidade do e-Livestock para avaliar três aspectos principais: (i) abstração de tecnologias disruptivas baseadas em Internet das Coisas (IoT) e Inteligência Artificial, e sua incorporação em uma arquitetura única, específica para o domínio da pecuária, (ii) suporte para a reutilização e derivação de uma arquitetura auto-adaptativa para apoiar o desenvolvimento de uma aplicação de apoio à decisão para o subdomínio da pecuária e (iii) suporte para estudos empíricos em uma fazenda inteligente real para facilitar a transferência de tecnologia para a indústria. Portanto, a principal contribuição dessa pesquisa é o desenvolvimento de uma arquitetura combinando técnicas de machine learning e ontologia para apoiar decisões mais complexas ao considerar um grande volume de dados gerados nas fazendas. Os resultados revelaram que a arquitetura e-Livestock pode apoiar monitoramento, controle, previsão e ações automatizadas em um ambiente de produção de leite/Compost Barn. |