Evolution of reward functions for reinforcement learning applied to stealth games

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Mendonça, Matheus Ribeiro Furtado de lattes
Orientador(a): Fonseca Neto, Raul lattes
Banca de defesa: Oliveira, Rafael Sachetto lattes, Leite, Saul de Castro lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4771
Resumo: Muitos jogos modernos apresentam elementos que permitem que o jogador complete certos objetivos sem ser visto pelos inimigos. Isso culminou no surgimento de um novo gênero chamado de jogos furtivos, onde a furtividade é essencial. Embora elementos de furtividade sejam muito comuns em jogos modernos, este tema não tem sido estudado extensivamente. Este trabalho aborda três problemas distintos: (i) como utilizar uma abordagem por aprendizado de máquinas de forma a permitir que o agente furtivo aprenda como se comportar adequadamente em qualquer ambiente, (ii) criar um método eficiente para planejamento de caminhos furtivos que possa ser acoplado à nossa formulação por aprendizado de máquinas e (iii) como usar computação evolutiva de forma a definir certos parâmetros para nossa abordagem por aprendizado de máquinas. É utilizado aprendizado por reforço para aprender bons comportamentos que sejam capazes de atingir uma alta taxa de sucesso em testes aleatórios de um jogo furtivo. Também é proposto uma abor dagem evolucionária capaz de definir automaticamente uma boa função de reforço para a abordagem por aprendizado por reforço.