Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Fatigate, Gustavo Resende
 |
Orientador(a): |
Reis, Ruy Freitas
 |
Banca de defesa: |
Camata, José Jerônimo
,
Oliveira, Rafael Sachetto
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/16066
|
Resumo: |
De acordo com Organização Mundial da Saúde, o câncer é uma preocupação de saúde global. O alto índice de mortalidade move a comunidade científica a estudar novos tratamentos, dentre esses podemos citar a hipertermia por nanopartículas magnéticas. Este tratamento consiste em submeter a região alvo à um campo magnético de baixa frequência, fazendo com que as nanopartículas causem o aumento da temperatura acima de 43◦C, considerada a temperatura alvo para lesionar o tecido e conduzir as células a necrose. Este trabalho usa o modelo tridimensional in silico de Pennes descrito por uma equação diferencial parcial (EDP) para estimar a porcentagem de dano ao tecido devido ao tratamento com hipertermia. A evolução diferencial é usada para otimizar o tratamento, sugerindo os melhores lugares para realizar as injeções de nanopartículas magnéticas de modo a maximizar a lesão nas células tumorais e minimizar os danos ao tecido saudável. Foram realizados testes considerando domínios bidimensionais e tridimensionais e, para cada domínio, três diferentes cenários visando avaliar as sugestões obtidas com o uso do método de otimização. Os resultados indicam que a técnica proposta é promissora: foi observada a redução da porcentagem de dano ao tecido saudável e a completa lesão do tecido tumoral. Considerando o modelo tridimensional em seu cenário mais complexo, o processo de otimização foi responsável por diminuir o dano ao tecido saudável em 59% se as injeções de nanopartículas forem posicionadas em um local não intuitivo, ou seja, diferente do centro dos tumores. A solução numérica da EDP em conjunto com a evolução diferencial aumenta o esforço computacional para a execução do algoritmo. Devido a esse fator, uma estratégia paralela utilizando a arquitetura CUDA foi implementada com o intuito de tornar a resolução da EDP menos custosa, utilizando as GPUs NVIDIA. Comparando o código paralelo com o sequencial executado somente em CPU, observou-se um ganho de desempenho de até 84, 4 vezes. |